FLOYD'S ALGORITHM

- The All-pairs Shortest Paths Problem finds the distances-i.e., the lengths of the shortest paths- from each vertex to all other vertices.
- Floyd's algorithm invented by Robert W. Floyd. is used to solve All-pairs shortest paths problem.
- It is applicable to both undirected and directed weighted graphs.

(a)
$W=\begin{gathered}a \\ b \\ c \\ d\end{gathered}\left[\begin{array}{cccc}a & b & c & d \\ 0 & \infty & 3 & \infty \\ 2 & 0 & \infty & \infty \\ \infty & 7 & 0 & 1 \\ 6 & \infty & \infty & 0\end{array}\right]$
(b)
$D=\begin{gathered}a \\ b \\ c \\ d\end{gathered}\left[\begin{array}{cccc}a & b & c & d \\ 0 & 10 & 3 & 4 \\ 2 & 0 & 5 & 6 \\ 7 & 7 & 0 & 1 \\ 6 & 16 & 9 & 0\end{array}\right]$
(c)
(a) Digraph. (b) Its weight matrix. (c) Its distance matrix.
- Floyd's algorithm computes the distance matrix of a weighted graph with n vertices through a series of $n \times n$ matrices:

$$
D^{(0)}, \ldots, D^{(k-1)}, D^{(k)}, \ldots D^{(n)}
$$

- The element $d^{(k)}{ }_{i j}$ in the i th row and the j th column of matrix $D^{(k)}(i, j=1,2, \ldots, n, k=0$, $1, \ldots, n)$ is equal to the length of the shortest path among all paths from the i th vertex to the j th vertex with each intermediate vertex, if any, numbered not higher than k.
- $D^{(0)}$ is simply the weight matrix of the graph. The last matrix in the series, $D^{(n)}$, contains the lengths of the shortest paths among all paths that can use all n vertices as intermediate.
- The formula for generating the elements of matrix $D^{(k)}$ from the elements of matrix $D^{(k-1)}$:

$$
d_{i j}^{(k)}=\min \left\{d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right\} \quad \text { for } k \geq 1, \quad d_{i j}^{(0)}=w_{i j} .
$$

- That is, the element in row i and column j of the current distance matrix $D(k-1)$ is replaced by the sum of the elements in the same row i and the column k and in the same column j and the row k if and only if the latter sum is smaller than its current value.
- The pseudocode of Floyd's algorithm is

ALGORITHM Floyd(W[1..n, 1..n])

//Implements Floyd's algorithm for the all-pairs shortest-paths problem
//Input: The weight matrix W of a graph with no negative-length cycle
//Output: The distance matrix of the shortest paths' lengths

$$
\begin{aligned}
& D \leftarrow W \\
& \text { for } k \leftarrow 1 \text { to } n \text { do } \\
& \quad \text { for } i \leftarrow 1 \text { to } n \text { do } \\
& \quad \text { for } j \leftarrow 1 \text { to } n \text { do } \\
& \quad D[i, j] \leftarrow \min \{\mathrm{D}[i, j], \mathrm{D}[i, k]+\mathrm{D}[k, j])
\end{aligned}
$$

return D

- The time efficiency is only $\Theta\left(n^{3}\right)$.

PROBLEM

Solve the all-pairs shortest paths problem for the given graph

The weight matrix for the given graph is

$$
D^{(0)}=\begin{aligned}
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\begin{array}{c|cccc}
a & b & c & d \\
\hline 0 & \infty & 3 & \infty \\
\hline 2 & 0 & \infty & \infty \\
\infty & 7 & 0 & 1 \\
6 & \infty & \infty & 0
\end{array}\right]
$$

To find $\mathrm{D}^{(1)}$, i.e. Lengths of the shortest paths with intermediate vertices numbered not higher than 1, i.e., just a

$$
\begin{aligned}
& \mathrm{D}^{(1)}[\mathrm{b}, \mathrm{c}]=\min \left\{\mathrm{D}^{(0)}[\mathrm{b}, \mathrm{c}], \mathrm{D}^{(0)}[\mathrm{b}, \mathrm{a}]+\mathrm{D}^{(0)}[\mathrm{a}, \mathrm{c}]\right\}=\min \{\infty, 2+3\}=\mathbf{5} \\
& \mathrm{D}^{(1)}[\mathrm{b}, \mathrm{~d}]=\min \left\{\mathrm{D}^{(0)}[\mathrm{b}, \mathrm{~d}], \mathrm{D}^{(0)}[\mathrm{b}, \mathrm{a}]+\mathrm{D}^{(0)}[\mathrm{a}, \mathrm{~d}]\right\}=\min \{\infty, 2+\infty\}=\infty \\
& \mathrm{D}^{(1)}[\mathrm{c}, \mathrm{~b}]=\min \left\{\mathrm{D}^{(0)}[\mathrm{c}, \mathrm{~b}], \mathrm{D}^{(0)}[\mathrm{c}, \mathrm{a}]+\mathrm{D}^{(0)}[\mathrm{a}, \mathrm{~b}]\right\}=\min \{7, \infty+\infty\}=7 \\
& \mathrm{D}^{(1)}[\mathrm{c}, \mathrm{~d}]=\min \left\{\mathrm{D}^{(0)}[\mathrm{c}, \mathrm{~d}], \mathrm{D}^{(0)}[\mathrm{c}, \mathrm{a}]+\mathrm{D}^{(0)}[\mathrm{a}, \mathrm{~d}]\right\}=\min \{1, \infty+\infty\}=1 \\
& \mathrm{D}^{(1)}[\mathrm{d}, \mathrm{~b}]=\min \left\{\mathrm{D}^{(0)}[\mathrm{d}, \mathrm{~b}], \mathrm{D}^{(0)}[\mathrm{d}, \mathrm{a}]+\mathrm{D}^{(0)}[\mathrm{a}, \mathrm{~b}]\right\}=\min \{\infty, 6+\infty\}=\infty \\
& \mathrm{D}^{(1)}[\mathrm{d}, \mathrm{c}]=\min \left\{\mathrm{D}^{(0)}[\mathrm{d}, \mathrm{c}], \mathrm{D}^{(0)}[\mathrm{d}, \mathrm{a}]+\mathrm{D}^{(0)}[\mathrm{a}, \mathrm{c}]\right\}=\min \{\infty, 6+3\}=\boldsymbol{9}
\end{aligned}
$$

Now our $\mathrm{D}^{(1)}$ is

$$
D^{(1)}=\begin{aligned}
& a \\
& a \\
& b \\
& d \\
& d
\end{aligned}\left[\begin{array}{cccc}
a & b & c & d \\
0 & \infty & 3 & \infty \\
\hline 2 & 0 & \mathbf{5} & \infty \\
\hline \infty & 7 & 0 & 1 \\
6 & \infty & \mathbf{9} & 0
\end{array}\right]
$$

To find $D^{(2)}$, i.e. Lengths of the shortest paths with intermediate vertices numbered not higher than 2, i.e., $a \& b$

$$
\begin{aligned}
& \mathrm{D}^{(2)}[\mathrm{a}, \mathrm{c}]=\min \left\{\mathrm{D}^{(1)}[\mathrm{a}, \mathrm{c}], \mathrm{D}^{(1)}[\mathrm{a}, \mathrm{~b}]+\mathrm{D}^{(1)}[\mathrm{b}, \mathrm{c}]\right\}=\min \{3, \infty+5\}=3 \\
& \mathrm{D}^{(2)}[\mathrm{a}, \mathrm{~d}]=\min \left\{\mathrm{D}^{(1)}[\mathrm{a}, \mathrm{~d}], \mathrm{D}^{(1)}[\mathrm{a}, \mathrm{~b}]+\mathrm{D}^{(1)}[\mathrm{b}, \mathrm{~d}]\right\}=\min \{\infty, \infty+\infty\}=\infty \\
& \mathrm{D}^{(2)}[\mathrm{c}, \mathrm{a}]=\min \left\{\mathrm{D}^{(1)}[\mathrm{c}, \mathrm{a}], \mathrm{D}^{(1)}[\mathrm{c}, \mathrm{~b}]+\mathrm{D}^{(1)}[\mathrm{b}, \mathrm{a}]\right\}=\min \{\infty, 7+2\}=9 \\
& \mathrm{D}^{(2)}[\mathrm{c}, \mathrm{~d}]=\min \left\{\mathrm{D}^{(1)}[\mathrm{c}, \mathrm{~d}], \mathrm{D}^{(1)}[\mathrm{c}, \mathrm{~b}]+\mathrm{D}^{(1)}[\mathrm{b}, \mathrm{~d}]\right\}=\min \{1,7+\infty\}=1 \\
& \mathrm{D}^{(2)}[\mathrm{d}, \mathrm{a}]=\min \left\{\mathrm{D}^{(1)}[\mathrm{d}, \mathrm{a}], \mathrm{D}^{(1)}[\mathrm{d}, \mathrm{~b}]+\mathrm{D}^{(1)}[\mathrm{b}, \mathrm{a}]\right\}=\min \{6, \infty+2\}=6 \\
& \mathrm{D}^{(2)}[\mathrm{d}, \mathrm{c}]=\min \left\{\mathrm{D}^{(1)}[\mathrm{d}, \mathrm{c}], \mathrm{D}^{(1)}[\mathrm{d}, \mathrm{~b}]+\mathrm{D}^{(1)}[\mathrm{b}, \mathrm{c}]\right\}=\min \{9, \infty+5\}=9
\end{aligned}
$$

Now our $\mathrm{D}^{(2)}$ is

$$
D^{(2)}=\begin{aligned}
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\begin{array}{cccc}
a & b & c & d \\
0 & \infty & \boxed{3} & \infty \\
2 & 0 & 5 & \infty \\
\hline 9 & 7 & 0 & 1 \\
\hline 6 & \infty & 9 & 0
\end{array}\right]
$$

To find $\mathrm{D}^{(3)}$, i.e. Lengths of the shortest paths with intermediate vertices numbered not higher than 3, i.e., $a, b \& c$

$$
\begin{aligned}
& \mathrm{D}^{(3)}[\mathrm{a}, \mathrm{~b}]=\min \left\{\mathrm{D}^{(2)}[\mathrm{a}, \mathrm{~b}], \mathrm{D}^{(2)}[\mathrm{a}, \mathrm{c}]+\mathrm{D}^{(2)}[\mathrm{c}, \mathrm{~b}]\right\}=\min \{\infty, 3+7\}=\mathbf{1 0} \\
& \mathrm{D}^{(3)}[\mathrm{a}, \mathrm{~d}]=\min \left\{\mathrm{D}^{(2)}[\mathrm{a}, \mathrm{~d}], \mathrm{D}^{(2)}[\mathrm{a}, \mathrm{c}]+\mathrm{D}^{(2)}[\mathrm{c}, \mathrm{~d}]\right\}=\min \{\infty, 3+1\}=\mathbf{4} \\
& \mathrm{D}^{(3)}[\mathrm{b}, \mathrm{a}]=\min \left\{\mathrm{D}^{(2)}[\mathrm{b}, \mathrm{a}], \mathrm{D}^{(2)}[\mathrm{b}, \mathrm{c}]+\mathrm{D}^{(2)}[\mathrm{c}, \mathrm{a}]\right\}=\min \{2,5+9\}=2 \\
& \mathrm{D}^{(3)}[\mathrm{b}, \mathrm{~d}]=\min \left\{\mathrm{D}^{(2)}[\mathrm{b}, \mathrm{~d}], \mathrm{D}^{(2)}[\mathrm{b}, \mathrm{c}]+\mathrm{D}^{(2)}[\mathrm{c}, \mathrm{~d}]\right\}=\min \{\infty, 5+1\}=\mathbf{6} \\
& \mathrm{D}^{(3)}[\mathrm{d}, \mathrm{a}]=\min \left\{\mathrm{D}^{(2)}[\mathrm{d}, \mathrm{a}], \mathrm{D}^{(2)}[\mathrm{d}, \mathrm{c}]+\mathrm{D}^{(2)}[\mathrm{c}, \mathrm{a}]\right\}=\min \{6,9+9\}=6 \\
& \mathrm{D}^{(3)}[\mathrm{d}, \mathrm{~b}]=\min \left\{\mathrm{D}^{(2)}[\mathrm{d}, \mathrm{~b}], \mathrm{D}^{(2)}[\mathrm{d}, \mathrm{c}]+\mathrm{D}^{(2)}[\mathrm{c}, \mathrm{~b}]\right\}=\min \{\infty, 9+7\}=\mathbf{1 6}
\end{aligned}
$$

Now our $\mathrm{D}^{(3)}$ is

$$
D^{(3)}=\begin{aligned}
& a \\
& b \\
& b \\
& d
\end{aligned}\left[\begin{array}{cccc}
a & b & c & d \\
0 & \mathbf{1 0} & 3 & \mathbf{4} \\
2 & 0 & 5 & \mathbf{6} \\
9 & 7 & 0 & 1 \\
\hline 6 & \mathbf{1 6} & 9 & 0
\end{array}\right]
$$

To find $\mathrm{D}^{(4)}$, i.e. Lengths of the shortest paths with intermediate vertices numbered not higher than 4, i.e., $a, b, c \& d$

$$
\begin{aligned}
& D^{(4)}[a, b]=\min \left\{D^{(3)}[a, b], D^{(3)}[a, d]+D^{(3)}[d, b]\right\}=\min \{10,4+16\}=10 \\
& D^{(4)}[a, c]=\min \left\{D^{(3)}[a, c], D^{(3)}[a, d]+D^{(3)}[d, c]\right\}=\min \{3,4+9\}=3 \\
& D^{(4)}[b, a]=\min \left\{D^{(3)}[b, a], D^{(3)}[b, d]+D^{(3)}[d, a]\right\}=\min \{2,6+6\}=2 \\
& D^{(4)}[b, c]=\min \left\{D^{(3)}[b, c], D^{(3)}[b, d]+D^{(3)}[d, c]\right\}=\min \{5,6+9\}=5 \\
& D^{(4)}[c, a]=\min \left\{D^{(3)}[c, a], D^{(3)}[c, d]+D^{(3)}[d, a]\right\}=\min \{9,1+6\}=7 \\
& D^{(4)}[c, b]=\min \left\{D^{(3)}[c, b], D^{(3)}[c, d]+D^{(3)}[d, b]\right\}=\min \{7,1+16\}=7
\end{aligned}
$$

Now our $\mathrm{D}^{(4)}$ is

$$
D^{(4)}=\begin{aligned}
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\begin{array}{cccc}
a & b & c & d \\
0 & 10 & 3 & 4 \\
2 & 0 & 5 & 6 \\
7 & 7 & 0 & 1 \\
6 & 16 & 9 & 0
\end{array}\right]
$$

The shortest [ath from every vertex to every other vertex present in the given graph is

$$
\begin{aligned}
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\begin{array}{cccc}
a & b & c & d \\
0 & 10 & 3 & 4 \\
2 & 0 & 5 & 6 \\
7 & 7 & 0 & 1 \\
6 & 16 & 9 & 0
\end{array}\right]
$$

