
FLOYD’S ALGORITHM 

 The All-pairs Shortest Paths Problem finds the distances—i.e., the lengths of the shortest 

paths— from each vertex to all other vertices.  

 Floyd’s algorithm invented by Robert W. Floyd. is used to solve All-pairs shortest paths 

problem. 

 It is applicable to both undirected and directed weighted graphs. 

 

 

 Floyd’s algorithm computes the distance matrix of a weighted graph with n vertices 

through a series of n × n matrices: 
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 The element d
(k)

ij in the ith row and the jth column of matrix D
(k)

 (i, j = 1, 2, . . . , n, k = 0, 

1, . . . , n) is equal to the length of the shortest path among all paths from the ith vertex to 

the jth vertex with each intermediate vertex, if any, numbered not higher than k. 

 D
(0)

 is simply the weight matrix of the graph. The last matrix in the series, D
(n)

, contains 

the lengths of the shortest paths among all paths that can use all n vertices as 

intermediate. 

 The formula for generating the elements of matrix D
(k)

 from the elements of matrix D
(k−1)

: 

 

 That is, the element in row i and column j of the current distance matrix D(k−1) is 

replaced by the sum of the elements in the same row i and the column k and in the same 

column j and the row k if and only if the latter sum is smaller than its current value. 

 The pseudocode of Floyd’s algorithm is 

ALGORITHM Floyd(W[1..n, 1..n]) 

//Implements Floyd’s algorithm for the all-pairs shortest-paths problem 

//Input: The weight matrix W of a graph with no negative-length cycle 



//Output: The distance matrix of the shortest paths’ lengths 

D ← W 

for k←1 to n do 

for i ←1 to n do 

for j ←1 to n do 

D[i, j ] ← min{D[i, j ], D[i, k] + D[k, j]) 

return D 

 The time efficiency is only  . 

 

PROBLEM 

Solve the all-pairs shortest paths problem for the given graph 

 

The weight matrix for the given graph is 

 

 

To find D
(1)

, i.e. Lengths of the shortest paths with intermediate vertices numbered not higher 

than 1, i.e., just a 
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Now our D
(1)

 is 

 

To find D
(2)

, i.e. Lengths of the shortest paths with intermediate vertices numbered not higher 

than 2, i.e., a & b 
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Now our D
(2)

 is 

 

To find D
(3)

, i.e. Lengths of the shortest paths with intermediate vertices numbered not higher 

than 3, i.e., a, b & c 

D
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[a,b] = min{D
(2)

[a,b], D
(2)

[a,c] + D
(2)

[c,b]} = min{∞, 3 + 7}= 10 

D
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[b,c] + D
(2)

[c,a]} = min{2, 5 + 9}= 2 
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Now our D
(3)

 is 



 

To find D
(4)

, i.e. Lengths of the shortest paths with intermediate vertices numbered not higher 

than 4, i.e., a, b, c & d 

D
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[c,d] + D
(3)

[d,a]} = min{9, 1 + 6}= 7 

D
(4)
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[d,b]} = min{7, 1 + 16}= 7 

 

Now our D
(4)

 is 

 

The shortest [ath from every vertex to every other vertex present in the given graph is  

 


